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The method of analysis of the adsorption branch of a nitrogen sorption isotherm, 
as given in Part IX and Part X of this series, is extended to the model of spheroidal 
cavities. The results of the cumulative calculations are shown to be satisfactory in 

. 
appropriate cases, provided the necessary corrections for the influence of adsorption 
are made to the fundamental equations governin g adsorl)tion and capillary condcn- 
sation in spheroidal cavities. 

1. INTR~DU~TI~I~ 

It has been shown in Parts IX and X of 
this series (1, 2), that pore distributions 
may be calculated from the adsorption 
branch of A-type nitrogen adsorption iso- 
therms, if the model of open cylindrical 
pores is adopted. Now the model of open 
cylinders has to be considered as an ideal- 
ization of reality at best, and A-type hys- 
teresis loops may be found in cases where 
the characteristic pore shape deviates con- 
siderably from t,he model of ideal cylinders 
open at both ends. On the other hand, ideal 
A-type hysteresis loops are encountered 
quite rarely in practice, and in many cases 
the hysteresis loop has some E-type char- 
acteristics as well. The E-type hysteresis 
loop has frequently been interpreted as 
being connected with the existence of ink- 
bottle type pores, viz., pores consisting of 
wide bodies fitted with narrow necks. 

It has been recognized for many years 
and even ages, that the presence of ink- 
bottle type cavities filled with liquid con- 
stit,utes a special problem in capillarity. 
Already in 1718, Jurin (3) supposed that 
t,he emptying of capillary vessels consisting 
of a wide body with a very narrow neck, 
for example, a glass bell fitted with a nar- 
row neck, was governed by the dimensions 

of the capillary neck rather than by the 
dimensions of the bell itself. Here we are 
dealing with a sort of macroscopic “ink- 
bottle.” In more recent times, it was 
Kraemer (4) who suggested that in porous 
systems pores of the ink-bottle type might 
occur, and that capillary condensation dur- 
ing adsorption in such pores is governed 
by the radius of curvature of the wide body 
of the pores, whereas upon desorption the 
narrow neck is the factor determining t.he 
emptying of the pores. This point of view 
has been worked out by McBain (5) and 
by Cohan (6) as one of t,hc possible ex- 
planations for the existence of sorption hys- 
teresis in porous adsorbents. Although 
this point of view stems to have been ac- 
cepted by most of the workers in the field, 
only a few instances arc known where the 
ink-bottle model has been applied to the 
calculation of pore distributions from ni- 
t,rogen sorption isotherms. De Boer et al. 
(7) have shown that in t,he case of ink- 
bottle type pores the adsorption branch may 
be used successfully in the calculation of 
pore-size distributions. 

2. Two TYPES OF I?JK ROTTLES 

In the following discussion we will de- 
note by an ink-bottle pore a pore with a 
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wide body and a narrow neck. Whether such 
a pore gives rise to an A-type hysteresis 
loop or rather to an E-type hysteresis 
loop depends on the relative magnitude of 
the radii of curvature of the wide parts and 
of the narrow necks of the pore, as was 
shown before by de Boer (8). Schematically, 
another distinction may be made and will 
prove useful in the thermodynamic discus- 
sion that will be given in the next section. 
In extreme cases the wide body of the pore 
may exhibit two equal radii of curvature, 
viz. spheroidal cavities, or may exhibit 
only one finite radius of curvature, viz. 
cylindrical tubes. Although the real shape 
of the ink-bottle capillary may be some- 
where in between these extremes, such a 
distinction is essential in discussing the 
behavior on filling of the pore during 
adsorption. 

Type I Ink Bottles 

By Type I ink bottles we shall denote 
spheroidal cavities fitted with a narrow 
neck, which may be considered to be either 
cylindrical or slit-shaped. During adsorp- 
tion at some time of the adsorption process 
this neck will be blocked with capillary 
condensate, without essentially blocking 
the transport of molecules from the sur- 
rounding gas phase to the inner parts of 
the pores, as diffusion of adsorbed mole- 
cules may take place from the capillary 
condensate in the necks. The adsorbed layer 
is concavely curved with two equal radii 
of curvature and upon increase of pressure 
this adsorbed layer grows until a critical 

thickness t,, has been reached, leading to 
a sudden filling of the whole body of the 
pore with capillary condensate. Here the 
stability of the doubly curved meniscus 
determines the behavior upon adsorption, 
just as in the case of the singly curved 
meniscus with open cylindrical pores, dis- 
cussed in the preceding parts of this series. 

Upon desorption the evaporation from 
the body of the pore is determined by the 
dimensions of the neck of the pore. Pores 
exhibiting this behavior will be found 
among the shape groups II-b and XV ac- 
cording to the classification of de Boer (8), 
whereas, possibly, pores belonging to shape 
group XIV, will show the same behavior. 
As the shape group XV is found in cases 
where the porous material is constituted 
of small particles packed together, this type 
of behavior will be encountered quite fre- 
quently in practice. This type of ink bottles 
is schematically represented in the right- 
hand part of Fig. 1. 

Type II Ink Bottles 

As was stated before, Type II ink bottles 
may be visualized to consist of long cy- 
lindrical tubes fitted with a narrow neck 
at one end, whereas the other end may be 
closed, or consist of another narrow neck. 
The moment the neck is filled with capillary 
condensate during adsorption, inside the 
cylinder there is a meniscus formed at 
both ends of the cylinder. This meniscus 
is essentially the same meniscus as the one 
present in a cylindrical pore, closed at one 
end, during desorption. As will be shown in 

FIQ. 1. Right: Type I ink bottle, wide part of the pore is essentially spheroidal in shape. Left: 
Type II ink bottle, wide part of the pore is essentially cylindrical in shape. 
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Part XII of this series, such a meniscus 
in general has, at each point of the menis- 
cus, two different radii of curvature, 
as a consequence of the influence of the 
walls of the pore on the thermodynamic 
properties of the capillary condensed liquid. 
At low pressure such a meniscus is stable 
only at the ends of the pores. As soon as 
the pressure has reached j%, the pressure 
whereupon capillary desorption has been 
calculated to take place in cylindrical pores 
according to Part IX of this series [Eq. 
(16) 1, this meniscus is stable at every posi- 
tion in the cylindrical part of the pores. 
Upon increase of pressure above pD the 
meniscus vanishes by complete filling of the 
pore by capillary condensate. WC may con- 
clude that the adsorption branch of a Type 
II ink bottle should coincide with the de- 
sorption branch of an isotherm measured 
on ideal open cylinders with the same 
radius. If no narrow neck were present 
but only a closing of the cylinder at one 
end, then the adsorption branch and the 
desorption branch would completely coin- 
cide and no hysteresis will be observed at 
all. This is the model of ideal cylinders 
closed at one end. 

In Type II ink bottles again the narrow 
neck causes a delay in the evaporation upon 
desorption and hysteresis will be observed. 
The discussion of the behavior upon ad- 
sorption of this type of ink bottles has to 
be postponed to Part XII of this series, 
where the shape of the meniscus present 
in a cylindrical pore during desorption will 
be discussed in more detail. 

Ink bottles exhibiting Type II behavior 
may be found among the shape groups 
II-a, IV, VI, and VII of the classification 
of de Boer (8). This type of ink bottle is 
schematically represented in the left hand 
side of Fig. 1. In the present article we will 
restrict ourselves to Type I ink bottles. 

3. THERMODYKAMIC TREATMENT OF THE 
FILLING OF TYPE I INK BOTTLES 

A. The Adsorption Branch 

The t.hermodynamic treatment of the 
filling of ink-bottle pores of Type I is ex- 
actly analogous to that given for open 

cylindrical pores given in Part IX of this 
series (1) . 

Consider a spheroidal cavity with radius 
r, carrying an adsorbed layer of thickness 
t, at its walls. Upon transferring dN moles 
of gas to the adsorbed layer at constant 
temperature and pressure, the free ent.halpy 
of the system (pore + adsorbed layer + 
gas phase) is changed by 

(iG,r = (A - c(g) dN + y dil (1) 

where pLc and ,LL~ are the thermodynamic 
potentials of the adsorbed phase and the 
gas phase, respectively, y is the surface 
tension, and dA is the change in free sur- 
face area of the adsorbed film upon addi- 
tion of dN moles to it. 

Clearly for a spheroidal cavity, dA is 
related to dN by 

dA/dN = -2l’,J(~ - ta) (2) 

where V, is the molar volume of the ad- 
sorbate, in the present discussion, as a first 
approximation, again taken to be equal 
to that of the bulk liquid at the same tem- 
perature. 

Insertion of (2) into (1) results in 

dGldN,,r = cc, - ~g - 2yV,/(r - ta) (3) 

In the usual treatment of capillary conden- 
sation it is customary to take pc to be 
constant and equal to that of the bulk 
liquid, in which case pc and pB may be re- 
lated to the saturation pressure of the bulk 
liquid p, by pc - ps = RT In (pO/p). 

In that case Eq. (3) could be written as 

dG/dN,,T = RT Wpdp) - 2rVml(r - 2,) 
(4) 

In equilibrium, dG/dN,,, = 0, and for the 
vapor pressure of an adsorbed film of thick- 
ness t,, the resulting equation would be 

RT ln(pdp) = 2rVml(r - L) (5) 

This relation would be the analog for 
spheroidal cavities of Cohan’s equation for 
open cylindrical pores. It is, however, easy 
to show that at no thickness t, the ad- 
sorbed film would be stable, if it obeyed 
(5). For, as a necessary condition of 
stability 
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d2G/dN2,,, 2 0 (6) 
Differentiating (4) at constant p and T 
yields the expression 

d2G/dN”,,, = [-%Vml(r - &,)“I dt/dN (7) 

which is negative for every value of t, 
and so (6) is never satisfied. It must, 
consequently, be concluded that (5) has 
no physical significance and may not be 
applied to the calculation of pore dis- 
tributions. The reason for this is that 
the assumpt.ion of ,u~ as constant and 
equal to pL, the thermodynamic potential 
of the bulk liquid, is erroneous. As was ex- 
plained in Part IX of this series, pc is 
dependent on the distance to the pore wall 
and thus on t,. It is advant’ageous to express 
the difference between JL~ an pL by a rela- 
tion of the type 

PC = PL - F(t) @I 
where F(t) is an empirical function, which 
under certain simplifying assumptions may 
be derived from the universal t curve of 
multimolecular adsorption. 

Introducing (8) into (3) results in the 
following relation : 

dG/dN,>T = RT Wpdp) - F(t) 
- 2rVm/(r - 1) (9) 

In equilibrium, dG/dN,,, = 0, and for 
the equilibrium vapor pressure and thick- 
ness t, of the adsorbed layer the following 
equation results : 

RTMpdp) - We) = 2rv,l(r - tJ (10) 

From (lo), at each pressure, the thickness 
of the adsorbed layer corresponding to a 
pore radius r may be calculated if F(t) is 
known. As a consequence, the thickness of 
the adsorbed layer at a certain given pres- 
sure is different for each radius of the pore. 
The next question is, whether the thickness 
t, calculated from (lo), corresponds with 
a stable equilibrium. To solve this question 
(9) is differentiated at constant p and T, 
resulting in 

d2G/dN’,,T = [-dF(t)/dt 
- 27V,/(r - t)“] dt/dn (11) 

According to (6)) a sufficient requirement 
for stability is 

-dF(t)/dt - 27V,/(r - t)2 2 0 for t = t, 

It follows immediately that there must be a 
critical thickness t,,, given by 

-dP(t)/dt - 2yT’,/(r - t)2 = 0 fort = t,, 

(12) 
Thus, for each pore radius, a correspond- 

ing value of t,, may be calculated. When- 
ever for a certain pore radius and pressure, 
t, as calculated from (10) exceeds t,, as 
calculated from (12)) the adsorbed layer 
is no longer stable and complete filling of 
the pore occurs. It must be realized, how- 
ever, that already for values of t, below 
t,, the equilibrium is only metastable with 
respect to complete filling of the pore, just 
as was the case for cylindrical pores open 
at both ends. This will be shown in the 
next part of this section. 

B. Total Change in Free Enthalpy upon 
Complete Filling 

The question arises whether, thermody- 
namically, the adsorption branch in the 
case of Type I ink bottles is a stable or 
only a metastable branch. In order to in- 
vestigate this question on theoretical 
grounds, Eq. (3) may be integrated at con- 
stant p and T with respect to t, taking as 
the lower bound t,, of Section 3A, the 
upper bound t, being smaller or equal to T  

.I 
Nr 

AG,,T = PC - I47 
N. 

-$$dN 

/ 

It &(T - t)” = 
t. V?Vl 

~c - PLs - E) 
I 

dt (13) 

If t, is taken to be equal to T ,  this equation 
represent,s the total change in free enthalpy 
upon complete filling of the pore. If in (13) 
pc is taken to be equal to ,Q, the classical 
point of view, the following relation results: 

AG,,r = 
4lr(r - t,)” 

3v 
m 

RTIn F 
0 

- 4a(r - 1,)2-y (14) 

Capillary condensation may take place 
without a change in free enthalpy of the 
system, whenever AG,,r = 0, 

RT ln(po/pD) = 3#,/(r - t,) (15) 

where p, is the equilibrium pressure, where 
emptying should occur if no retardation 
phenomena prevented it. If we make a plot 
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of (14), that is of AG against t at constant 
p and T, then the resulting lines are exactly 
analogous to that of Fig. 1 of Part IX of 
this series. This means that although filling 
at the pressure pD of (15) would correspond 
to a thermodynamically stable situation, 
filling does not occur on account of the 
existence of a free enthalpy barrier separat- 
ing t, and Y. 

This barrier is seen to vanish as soon as 
d(~G)/dt = 0 for t = t,, resulting in Eq. 
(5). Again, the value t, does not correspond 
to a minimum in the free enthalpy of the 
system and thus not to an equilibrium 
thickness of the adsorbed layer. In order 
to remove this difficulty it is necessary to 
introduce (8) into (13), resulting in 

AG 
s 

tr 4*(r - t)’ 
P,T = 

ta T7n 

Again taking for the upper bound of 
integration T and putting AGp,T equal to 
zero, we find for the equilibrium pressure 
of filling pD 

’ - te = RT ln(p,JpD) 

/ J”(’ - t)*F(t)l (it 

’ (T - t,)*RT ln(po/pD) 
(17) 

where t, is given by (10). That filling 
does not occur at the pressure p, of 
(17)) has t,o be attributed to the existence 
of a potential barrier between t, and r. This 
barrier vanishes as soon as t, has reached 
t,,, viz. for d(AG)/dt = 0 for t = t,. The 
corresponding value of t, is the solution of 
(12). The situation is exactly analoguous 
to that of Fig. 2 of Part IX. For each value 
of r, a value of t, corresponding to pD may 
be calculated. For every value of t, be- 
tween this value and t,,, the adsorbed layer 
is metastable with respect to the situation 
where the pore is completely filled with 
capillary condensate. Thus, part of the ad- 
sorption branch is thermodynamically 
metastable. 

Upon desorption, emptying of pores 
would be expected for pressures lower than 

p, of Eq. (17)) while Eq. (15) holds in the 
classical point of view. As there is no means 
of establishing an equilibrium path of de- 
sorption in the case of spheroidal cavities, 
desorption is determined by the radius of 
the narrow necks of the cavities and de- 
sorption is no equilibrium process as re- 
gards the emptying of the cavities. 

It may be notewort,hy that Eq. (15) and 
(17), apart from the factor 3 instead of 2, 
are relations of the Kelvin-type, indicating 
the pressure at which emptying of the pore 
would be thermodynamically possible. 
These equations may not be obtained by 
application of the classical Kelvin formula 
to the desorption situation as no radius of 
curvature may be given for the desorption 
situation. The present method has the 
advantage that relat,ions of the Kelvin type 
may be obtained without introduction of 
the actual adsorption or desorption mech- 
anism, in accordance with the thermody- 
namic character of the derivation. 

The foregoing equations strictly apply 
only to Type I ink bottles. For Type II 
ink bot,tles the adsorption branch cor- 
responds to the desorption branch of open 
cylinders and thus the whole adsorpt,ion 
branch corresponds to stable states. In both 
cases the adsorption branch may be de- 
scribed by means of thermodynamic equi- 
librium conditions, whereas the desorption 
branch may not be described in such a way 
and thus does not lend it,self t.o the cal- 
culat,ion of pore distribut,ions. It is to be 
noted that although pores of shape groups 
belonging to either Type I or Type II ink- 
bottle pores may occur quite frequently in 
porous materials, it is a common practice 
to USC the desorption branch of the isotherm 
for the calculation of pore distributions. In 
the cases of pores wit,h an ink-bottle shape, 
this procedure may not be justified. 

4. NUMERICAL EVALUATION OF THE EQUA- 
TIONS GOVERNING THE ADSORPTION OF 

NITROGEN IN TYPE I INK-BOTTLE PORES 

Making use of the empirically found re- 
presentations for the adsorption of nitrogen 
at its normal boiling point at noncurved 
surfaces of inorganic oxides and similarly 
behaving substances as graphitized carbon 
blacks and barium sulfate, as given in Part 
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TABLE 1 
THE EQUILIBRIUM THICKNESS, (tJ, OF THE ADSORBED LAYER (Ai) IN SPHEROIDAL CAVITIES 

AS A FUNCTION OF r AND p/p, 

PIP0 r(A) = 
m 151.5 78.14 51.46 38.24 30.09 24.23 19.92 16.20 12.61 

0.9 14.92 29.61 
0.8 10.57 12.07 17.26 
0.7 8.57 9.34 10.50 14.23 
0.6 7.36 7.83 8.39 9.36 12.16 
0.5 6.50 6.75 7.09 7.59 8.37 10.39 
0.4 5.71 5.88 6.10 6.39 6.79 7.43 9.35 
0.3 5.01 5.14 5.28 5.46 5.69 6.00 6.53 8.04 
0.2 4.36 4.45 4.54 4.65 4.78 4.95 5.18 5.57 6.80 
0.1 3.68 3.73 3.78 3.84 3.91 3.99 4.10 4.25 4.51 5.17 

X of this series (.2), we may write for (8)) Just as was done in the preceding part 
the relation governing the thickness of the of this series, again we may define a formal 
adsorbed layer in a spheroidal cavity as a thickness t, as 
function of relative pressure and pore 
radius tf = VJS (19) 

log(po/p) - 13.99/t,2 + 0.034 V, representing the volume adsorbed in a 
= 4.05/(r - t,) for t, 5 10 A (18a) certain pore of radius r, and S the cor- 

log(polp) - 16.11hz 
responding surface area. For a spheroidal 

+ 0.1682 exp(-O.l137t,) 
pore, tf is obviously related to t, by 

= 4.05/(r - te) for L > 10 8 (18b) tf = t, - (te”/w + (te3/3r2) (20) 

For each value of the pore radius r and 
for each relative pressure, (18a) or (18b) 
may be solved for t,, most conveniently 
by means of iteration methods, e.g., the 
Newton-Raphson method. 

An abbreviated table of te as a function 
of r and p/p0 for nitrogen sorption at its 
normal boiling point is reproduced in Table 
1. 

In Table 2 the formal thicknesses tf 
corresponding to t, of Table 1 are gathered. 
Table 2 indicates that, although the equilib- 
rium thickness of the adsorbed layer is 
considerably larger than that corresponding 
to the thickness on a noncurved surface at 
the same pressure, the formal thickness in 
most of the cases is of the same magnitude 
and even somewhat less than that on a 

TABLE 2 
TEE FORMAL THICKNESS, (t,), OF THE ADSORBED LAYER (IN A) IN SPHEROIDAL CAVITIES 

AS A FUNCTION OF r AND p/p, 

P/PO ,(A) = 

ca 151.5 78.14 51.46 38.24 30.09 24.23 19.92 16.20 12.61 

0.9 14.92 24.20 
0.8 10.57 11.14 13.73 
0.7 8.57 8.78 9.15 10.66 
0.6 7.41 7.43 7.53 7.76 8.70 
0.5 6.50 6.45 6.47 6.53 6.67 7.21 
0.4 5.71 5.66 5.64 5.63 5.66 5.75 6.21 
0.3 5.01 4.97 4.93 4.90 4.88 4.88 4.93 5.23 
0.2 4.36 4.32 4.28 4.24 4.21 4.18 4.15 4.16 4.35 
0.1 3.68 3.64 3.61 3.56 3.52 3.48 3.44 3.41 3.37 3.44 
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noncurved surface. This means that a t plot 
of the adsorption isotherm in the case of 
Type I ink bottles will show no deviations 
from the linear plot or at most a downward 
deviation, as long as no actual capillary 
condensation leading to complete filling of 
the cavity takes place. If for the narrowest 
group of pores present t, has reached t,,, 
an upward deviation indicates the onset 
of capillary condensation. This important 
result indicates that a pore distribution 
has to be extended from saturation down to 
the pressure where the first upward devia- 
tion from the linear t plot occurs. 

For each pore radius, t,, may be cal- 
culated from the equations 

27.98/tcr3 = 4.05/(r - t,r)z for t,, 2 10 A 

32.22/t,r3 - 0.1682 
@la) 

X 0.1137 exp(-O.l137t,,) 
= 4.05/(r - t,,)2 for t,, > 10 i (21b) 

These equations immediately follow from 
(12) and the empirical representations of 
the t curve as given in the preceding part 
of this series. They may be solved by means 
of the iteration methods mentioned before. 
The results of the solution of (21) may be 
combined with (18), yielding the pressure 
at which a spheroidal cavity with specified 
radius completely fills with capillary con- 
densate. In Table 3 the radius correspond- 
ing to a number of relative pressures, as 
calculated from (18) and (21)) is re- 
presented. 

For the sake of comparison we include in 
Table 3 the radii corresponding to the same 
relative pressures, as calculated by means 
of (5), viz. the radii that would follow 
from the application of the Kelvin equation 
to the doubly curved adsorbed layer at the 
walls of the spheroidal cavity, in the same 
way as Cohan’s equation was used for the 
capillary condensation in open cylinders. 

Table 1 and Table 3 contain all the in- 
formation necessary to perform a pore dis- 
tribution calculated from the adsorption 
branch of a nitrogen sorption isotherm in 
the case of Type I ink bottles. In the next 
section a general formula will be derived 
for the calculation of pore distributions 

TABLE 3 
RADII OF SPHEROIDAL CAVITIES FILLING AT 

CERTAIN SPECIFIED RELATIVE PRESSURES, 

CALCULATED WITH THE AID OF EQ. (21), 
As COMPARED TO THOSE CALCULATED 

BY MEANS OF EQ. (5) 

P/PO Cb E;. (21) (A) E;. (5) 

0.9975 4456 3844 
0.9925 1593 1307 
0.9875 994.5 792.8 
0.9825 731 .o 569.8 
0.9775 581.6 444.7 
0.9725 484.9 364.5 
0.9675 416.9 308.9 
0.9625 366.4 268.1 
0.9575 327.2 237.0 
0.9525 295.9 212.4 
0.9475 270.2 192.5 
0.9425 248.7 176.1 
0.9375 230.4 162.3 
0.9325 214.6 150.6 
0.9275 200.8 140.5 
0.9225 188.7 131.6 
0.9175 177.9 123.8 
0.9125 168.2 117.0 
0.9075 159.4 110.8 
0.9025 151.1 105.3 
0.89 134.6 93.62 
0.87 114.0 79.57 
0.85 98.87 69.20 
0.83 87.27 61.22 
0.81 78.14 54.88 
0.79 70.76 49.65 
0.77 64.69 45.38 
0.75 59.58 41.77 
0.73 55.22 38.65 
0.71 51.46 35.95 
0.69 48.17 33.57 
0.67 45.26 31.45 
0.65 42.67 29.58 
0.63 40.35 27.88 
0.61 38.24 26.34 
0.59 36.33 24.95 
0.57 34.58 23.66 
0.55 32.96 22.49 
0.53 31.47 21.39 
0.51 30.09 20.38 
0.49 28.40 19.44 
0.47 27.28 18.56 
0.45 26.21 17.73 
0.43 25.20 16.95 
0.41 24.23 16.21 
0.39 23.30 15.51 
0.37 22.41 14.85 
0.35 21.55 14.22 
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TABLE 3 (Continued) 

P/PO (ii, E;. (21) (K, I&. (5) 

0.33 20.72 13.61 
0.31 19.92 13.03 
0.29 19.14 12.47 
0.27 18.38 11.93 
0.25 17.64 11.41 
0.23 16.91 10.90 
0.21 16.20 10.40 
0.19 15.49 9.91 
0.17 14.78 9.43 
0.15 14.07 8.95 

0.13 13.35 8.47 
0.11 12.61 7.97 

from the adsorption branch in the case of 
spheroidal cavities. 

5. DERIVATION OF A GENERAL FORMULA FOR 
THE CALCULATION OF PORE DISTRIBUTIONS 

For the calculation of pore distributions 
the adsorption branch is divided into cer- 
tain specified intervals of relative pressure, 
these intervals being bound by xk, the 
lower relative pressure bound, and x+1), 
the next higher relative pressure bound. 
Again the calculation is performed in the 
reverse sequence from the actual adsorption 
measurement and calculation is started at 
t.he highest relative pressure. Lowering the 
relative pressure from x(k-1) to xh results in 
a change in the volume of the condensed 
phase present in the pores, dVkC, consisting 
of two contributions : 

(a) Over the lath interval pores are 
emptied, the mean pore radius of this group 
of pores being rk, the radius corresponding 
to the mean relative pressure over the kth 
interval, as taken from Table 3. If the total 
surface area of this kth group of pores is 
denoted by Sk, then this part in the change 
of volume of the condensed phase obviously 
is equal to 

(rk - trk,zk)2/3rk2 x Sk, 

i&Q.k being the thickness of the remaining 
adsorbed layer at the wall of the pores of 
mean radius rk at the lowest relative pres- 
sure of the kth interval. 

(b) For the k-l groups of pores with 
radius larger than rk, already emptied at 

the relative pressure x(k-I) except for an 
adsorbed layer, the adsorbed layer in all 
these pores is diminished in thickness upon 
decreasing the relative pressure from x(k..I) 
to xJ<. If we denote the surface area present 
in the ith group of pores, with radius ri, 
by Si, then this part in the change of vol- 
ume of the condensed phase amounts to 

k-l 

c 
& [b-i - tri,zk)3 - (ri - tri,z(k-1))3] 

;=i 

Adding these two contributions, equating 
to dVkc and solving for Sk results in the 
pore distribution formula 

Sk = 

X 

k-l 

3ri2 
’ !rk - trk,zk)3 

(dV,’ - c & 

i=l 

[ki - t7a.zk)3 - (ri - tri,z(k4j)3]} (22) 

For the actual calculation of pore dis- 
tributions (22) may be applied, making 
use of the values of t+k from Table 1 and 
of the values of Si from each preceding 
step of the calculation. The pore volume 
of each group of pores is related to Sk by 

Sk = 31/‘k/rk (23) 

The application of (22) is tedious and 
lengthy for routine work, as for each step 
of the calculation the summation series at 
the right side of (22) has to be calculated 
again. If a high-speed electronic computer 
is present, t,he application of (22) is easy 
and straightforward and no difficulties are 
encountered in the practical application. A 
table of the required value of i&k may be 
set up once and used every time. The 
cumulative distribution functions S,,, and 
V Clll” are obtained by simply adding Sk 

and vk obtained from each step down to a 
relative pressure where the first deviation 
from the linear t plot occurs. 

If we would have neglected the influence 
of r on the thickness of t.he adsorbed layer 
and made use of the values of r of (5), viz. 
the classical conception of the application 
of Kelvin’s equation to the calculation of 
pore distributions, then (22) would reduce 
to a far more simple form 
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Sk = (Tk ?(,)3 c dVk” - (fz(k-1) - Lk) 

k-l k-l 

X 
c 

xi + (L(L1)2 - &k2) 
c 

Si r, 
i=l i=l 

12-l 

- (L(k-.1)3 - Lk”) 
c 1 

g (24) 
z 

i=l 

Equation (24) is analogous to the equa- 
tion given before by Montarnal (9) and 
by de Vleesschauwer (10) for the case of 
cylindrical pores. Application of (24) is 
possible even for desk calculations, because 
of the relatively simple form of the sum- 
mation series at the right side of (24). AS 
will be shown in the next section, the appli- 
cation of this equation is not only unjusti- 
fiable on the theoretical grounds discussed 
in Section 3, but also leads to most improb- 
able results. 

6. APPLICATION OF THE GENERAL EQUATIONS 
TO THE ACTUAL CALCULATION 

OF PORE DISTRIBUTIONS 

It is generally supposed than in porous 
glass, pores of the ink-bottle type are 
present. Of the rather extensive literature 
present on the adsorption in porous glass, 
we choose two isotherms from the series 
measured by Emmett and Cines (11) and 
calculated the pore-size distribution and 
the cumulative pore volume and surface 

area from the adsorption branch of the 
isotherm. A t-plot of the nitrogen isotherms 
on the samples of porous glass No. 4 and 
No. 6 is represented in Fig. 2. The published 
isotherms of Emmett and Cines were not 
represented as ml STP per gram but only 
as ml STP so the surface area calculated 
from the isotherm is not specific. The t plot 
of sample No. 4 shows the presence of 
micropores. The total surface area equals 
38.6 m?, whereas the presence of a second 
straight portion indicates the presence of 
wider pores wit’h a surface area of 25.1 
m?. The first deviation from this second 
straight part occurs at a relative pressure 
of 0.37 and the pore distribution calculation 
has been extended down to that relative 
pressure. The cumulative surface area 
should be compared to this last value, as 
there is no sense in calculating the dis- 
tribution of micropores by means of the 
concept of capillary condensation, the di- 
mension of these pores being definitely t.oo 
small for the concept of a liquid meniscus. 
A t plot of the sample porous glass No. 6 
of Emmett and Cines shows no indication 
of t,he presence of micropores. The total 
surface area as calculated from a straight 
line t,hrough the origin, is equal to 20.6 m”. 
The first deviation from the straight part 
of the t plot occurs at p/p,, = 0.44. Here 
we should find the total surface area on 
applying (22) down to a relative pressure 
of 0.44. The samples of Part X all showed 

Fro. 2. t plot of the nitrogen isotherms of the samples porous glass No. 4 and porous glass No. 6 
as measured by Emmett and Cines. 



162 BROEKHOFF AND DE BOER 

TABLE 4 
CUMULATIVE SURFACE AREAS AND PORE VOLUMES FOR THE MODEL OF SPHEROIDAL CAVITIES, 

AS CALCULATED BY MEANS OF Ea. (22), AS COMPARED TO THE RESULTS OF A CLASSICAL 
PORE DISTRIBUTTON CALCULATION ALONG THE ADSORPTION BRANCH 

Sample code 

P/PO. 
closing 

p/pQ. first point ot 
SBET sc.um Seum.olu V.“lU VWLdBW deviation hy;edpesls 

from 1 plot (ml/g) W/P) W/n) b&3, W/d W/g) 

Porous glass no. 4” 0.38 0.42 25.1d 21.1 37.5 0.0305 0.0287 0.0335 
Porous glass no. 60 0.44 0.50 20.6d 17.3 31.4 0.0227 0.0205 0.0242 
By 58ob 0.24 0.42 243 245 513 0.434 0.425 0.488 
By 75ob 0.24 0.46 134 150 241 0.464 0.472 0.502 
A 120” 0.26 0.40 609 679 1034 2.03 2.05 2.18 
A 27ob 0.30 0.51 556 600 967 1.74 1.77 1.92 
A 45ob 0.34 0.54 414 525 853 1.78 1.84 1.99 
A 75@ 0.63 0.63 280 285 464 2.05 2.02 2.19 
MiBo 5b 0.26 0.38 255 278 449 0.496 0.505 0.556 
BOW 450b 0.40 0.70 68d 63 97 0.479 0.477 0.500 
ZrOz 280c 0.14 0.42 240 266 519 0.252 0.254 0.314 
ZrOz 320c 0.19 0.45 180 203 392 0.201 0.204 0.253 
ZrOz 390” 0.36 0.53 100 107 192 0.183 0.186 0.218 
ZrOs 450” 0.64 0.64 64 64 107 0.190 0.191 0.213 

0 I’. H. Emmett and M. Cines, ref. (11). 
b Isotherms measured by Lippens, refs. (12) and (IS). 
c Isotherms measured by Rijnten, refs. (I/t) and (15). 
d Surface areas determined from the slope of the linear part of the t plot. 

a more or less pronounced A-type adsorp- 
tion isotherm. As de Boer (8) has shown, 
pores belonging to the shape groups II-b 
and the like, exhibit A-type hysteresis 
loops, although according to the classifica- 
tion of the present paper they definitely 
belong to the Type I ink-bottle class. Con- 
sequently, the model of spheroidal cavities 
is also a possibility for those isotherms, 
and the pore distribution has been recal- 
culated for all those isotherms. 

The results are gathered in Table 4. For 
the sake of comparison, the calculations 
have been repeated, making use of the solu- 
tions of (5) and the pore distribution 
formula (24). The cumulative results of 
this latter calculation have been denoted 
by &lass and Vclass. 

7. DISCUSSION 

The results presented in Table 4 indicate 
that in most of the cases under considera- 
tion the model of spheroidal cavities is as 
adequate as the model of open cylindrical 
pores, provided the corrections discussed 
in Section 3 are applied to the fundamental 

formulas for the calculation. In the classical 
application of Kelvin’s equation the radii 
of either open cylindrical or spheroidal 
pores filling at a certain relative pressure 
are relatively so small as to result in im- 
probably high values for the cumulative 
surface area. Although it might be argued 
that the model of open cylindrical pores is 
an unrealistic one, the model of spheroidal 
cavities should be a reasonable good ap- 
proximation at least for porous materials 
built up of small particles packed together. 
Here the corrected formulas of Section 3 
and 4 give satisfactory results at least in 
a first approximation. On the other hand, 
in some cases, the results of the cumulative 
calculations of surface area and pore vol- 
ume are definitely too high, e.g., for the 
samples A 120, A 270, and A 450 of the 
series of nitrogen sorption isotherms meas- 
ured on aluminum oxide by Lippens. In 
these cases, it will be shown in the next 
article of this series that the model of Type 
II ink bottles is as useful or even more 
useful than that of open cylindrical pores 
or Type I ink bottles. In that case the 
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FIG. 3. Examples of pore distribution curves as calculated by means of Eqs. (18) and (21). 

:idsorption branch has to be calculated 
with the aid of the radii connected with the 
desorption from cylindrical pores, which 
results in a considerable reduction in cal- 
culated cumulative surface area. For the 
other samples a comparison with the re- 
sults obtained with the aid of the model 
of open cylindrical pores, indicates that 
the analysis of the adsorption branch alone 
is not sufficient to decide between t.he two 
alternatives: open cylindrical pores or Type 
I ink bottles. Here an analysis of the de- 
sorption branch is necessary. In the case 
of open cylindrical pores, it is t,o be ex- 
pected that a calculation along the desorp- 
tion branch with the aid of Eq. (16) of 
Part IX of this series results in a cumula- 
tive surface area comparable to that of the 
adsorption branch and the BET surface 
area, whereas in the cast of Tppc I ink 

bottles no concordance is to be expected 
from an analysis of the desorption branch, 
this being a nonequilibrium branch with 
regard to the spheroidal cavities. In the 
case of Type II ink bottles an analysis of 
the desorption branch with the aid of the 
model of cylindrical pores should lead to 
too high cumulative results. 

Some samples of distribution curves cal- 
culated with the aid of the model of sphe- 
roidal cavities are given in Fig. 3. For 
comparision, in Fig. 4 t’he results of a 
classical distribution calculation along the 
adsorption branch, using the same model of 
spheroidal cavities, are given for the same 
samples. On the whole, the new method of 
calculation seems to work satisfactorily in 
practice. Uncertainties inherent in the pres- 
ent method may be divided into two 
cl:lssc!:: 
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FIG. 4. Examples of port distribution curves as calculated by means of Eq. (5). 

(a) The model of spheroidal cavities 
even in appropriate cases is an idealization, 
as the surface of a cavity may not be ex- 
pected to be spherical even in cases where 
the pores are present as cavities in between 
elementary particles of spheroidal shape. 
Moreover, the pore may have some tubular 
characteristics as well, or even other shape 
characteristics. 

(b) The simplifying assumptions made in 
deriving Eq. (10) and (12)) which are the 
same as those discussed in Part, IX of this 
series, viz., constant density of the con- 
densed phase, constant surface tension, and 
the applicability of classical (macro- 
scopic) thermodynamics to the situation 
in pores, are certainly not valid for narrow 
pores, making the applicability of the 
method to the analysis of the lower part 
of the adsorption isotherm questionable. 
At the moment, there seems to be no really 
satisfactory alternative for the analysis of 

this part of the isotherm in the case of 
porous substances. It, ought to be realized 
that, in such cases also the reliability of 
the surface area estimation either by means 
of the BET method or of the t method 
is questionable. 
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